ar X iv : a lg - g eo m / 9 41 20 13 v 1 1 4 D ec 1 99 4 EVEN LINKAGE CLASSES
نویسندگان
چکیده
In this paper the author generalizes the E and N -type resolutions used by Martin-Deschamps and Perrin [10] to subschemes of pure codimension in projective space, and shows that these resolutions are interchanged by the mapping cone procedure under a simple linkage. Via these resolutions, Rao’s correspondence is extended to give a bijection between even linkage classes of subschemes of pure codimension two and stable equivalence classes of reflexive sheaves E satisfying H ∗ (E) = 0 and Ext(E,O) = 0. Further, these resolutions are used to extend the work of Martin-Deschamps and Perrin for Cohen-Macaulay curves in P to subschemes of pure codimension two in Pn. In particular, even linkage classes of such subschemes satisfy the Lazarsfeld-Rao property and any minimal subscheme for an even linkage class links directly to a minimal subscheme for the dual class.
منابع مشابه
ar X iv : a lg - g eo m / 9 41 00 29 v 1 2 7 O ct 1 99 4 Contractions on a manifold polarized by an ample vector bundle
متن کامل
ar X iv : a lg - g eo m / 9 50 20 26 v 2 9 M ay 1 99 5 ALGEBRAIC SURFACES AND SEIBERG - WITTEN INVARIANTS
متن کامل
ar X iv : q - a lg / 9 41 20 06 v 1 1 9 D ec 1 99 4 CLASSICAL SPINOR STRUCTURES ON QUANTUM SPACES
A noncommutative-geometric generalization of the classical concept of spinor structure is presented. This is done in the framework of the formalism of quantum principal bundles. In particular, analogs of the Dirac operator and the Laplacian are introduced and analyzed. A general construction of examples of quantum spaces with a spinor structure is presented.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1994